Techniques for

preparation of gaseous samples with a desired concentration of analyte

Aim

- Learn to prepare gaseous samples with desired concentration of a solute

Importance

- Preparation of calibration samples (standards)
- Conducting chemical reactions in gas phase
- Production of commercial gases (LPG, etc.)
- Conducting research experiments

Advantages of having the skill

- More accurate calibration and analytical measurements
- Lower consumption of expensive materials
- More accurate and reliable experimental research
- Higher quality of manufactured products
- Greater satisfaction of the employer / salary

Example - quantification

Concentrations of calibration standards are 20\% greater than they should be

Concentration

- general measurement unit stating the amount of solute present in a known amount of solution

$$
\text { Concentration }=\frac{\text { amount of solute }}{\text { amount of solution }}
$$

- Amount - mass, volume or amount of substance

Units of concentrations of gases

Liquid samples:

- volume \%;
- mol/L;
- g/L;
- ppm (w/v); ppb (w/v); ppt (w/v)

Solid samples:

- weight \%;
- g/kg;
- ppm (mg/kg or $\mu \mathrm{g} / \mathrm{g}$); ppb ($\mu \mathrm{g} / \mathrm{kg}$); ppt (ng/kg)

Gaseous samples:

- volume \%;
- ppm (v/v) - milliliters of gaseous compound in $1 \mathrm{~m}^{3}$ of gas mixture;
- ppm (w/v) - milligrams of gaseous compound in $1 \mathrm{~m}^{3}$ of gas mixture
- $m g / m^{3}, \mu g / m^{3}, n g / m^{3}$

Types of concentrations

- Volume/volume - does not change with T and P
- Mass / volume - depends on T and P
- atm (or bar) - (partial) pressure units

Main formula for conversions

$$
p V=\frac{m R T}{M}
$$

- p - pressure (ambient or partial), kPa
- V-volume, L
- m-mass, g; M - molar mass, $\mathrm{g} / \mathrm{mol}$
- R - gas constant, $8.31 \mathrm{~L} \cdot \mathrm{kPa} /(\mathrm{mol} \cdot \mathrm{K})$

Exercise

Convert $50 \mathrm{ppm}(\mathrm{v} / \mathrm{v})$ of hydrogen sulfide in air to $\mathrm{mg} / \mathrm{m}^{3}$

$$
50 \mathrm{ppm}\left(\frac{v}{v}\right)=\frac{50 \mu L}{L}=\frac{50 \mathrm{~mL}}{m^{3}}
$$

Now we need to find the weight of 50 mL of hydrogen sulfide. For that purpose, we can use ideal gas law:

$$
p V=\frac{m R T}{M}
$$

Solution (continued)

$$
m=\frac{p V M}{R T}
$$

$\mathrm{V}=50 \mathrm{~mL} ; \mathrm{R}=8.31 \mathrm{~L} \cdot \mathrm{kPa} /(\mathrm{moL} \mathrm{K}) ; \mathrm{M}\left(\mathrm{H}_{2} \mathrm{~S}\right)=34 \mathrm{~g} / \mathrm{moL}$
Pressure and temperature are not given. But let's imagine that we are in Almaty now. The pressure is 680 mmHg , temperature $10^{\circ} \mathrm{C}$

- We need to convert temperature to $\mathrm{K}: \mathrm{T}=273+10=283 \mathrm{~K}$
- The pressure must be converted to kPa . We know that 760 $\mathrm{mmHg}=101.325 \mathrm{kPa} . \mathrm{P}=101.325 \mathrm{kPa} \times 680 \mathrm{mmHg} / 760$ $\mathrm{mmHg}=90.66 \mathrm{kPa}$

Solution (continued)

$$
\begin{gathered}
m=\frac{90.66 \mathrm{kPa} \times 50 \mathrm{~mL} \times 34 \mathrm{~g} \mathrm{~K} \mathrm{moL}}{8.31 \mathrm{LkPa} \times 283 \mathrm{KmoL}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \\
m=0.0655 \mathrm{~g}=65.5 \mathrm{mg} \\
C\left(\frac{m g}{\mathrm{~m}^{3}}\right)=\frac{65.5 \mathrm{mg}}{\mathrm{~m}^{3}}=65.5 \frac{\mathrm{mg}}{\mathrm{~m}^{3}}
\end{gathered}
$$

Q: will the C increase if temperature is increased to $30^{\circ} \mathrm{C}$?

Question

- What is the partial pressure of $\mathrm{H}_{2} \mathrm{~S}$ at this concentr.?
- $m=0.0655 \mathrm{~g} ; \quad \mathrm{V}=1000 \mathrm{~L}$

$$
\begin{gathered}
p=\frac{m R T}{M V}=\frac{0.0655 \mathrm{~g} \times 8.31 \mathrm{LkPa} \times 283 \mathrm{~K} \mathrm{~mol}}{34 \mathrm{~g} \mathrm{1000} \mathrm{~mol} \mathrm{~K}} \\
\mathrm{p}=0.00453 \mathrm{kPa}=4.53 \mathrm{~Pa}
\end{gathered}
$$

Q: will the partial pressure increase if temperature is increased to $30^{\circ} \mathrm{C}$?

Quiz 1/2

Sulfur dioxide concentration in Almaty air now is 37 $\mu \mathrm{g} / \mathrm{m}^{3}$. Convert this concentration to ppbV. Atmospheric pressure is $\mathbf{7 4 0} \mathbf{~ m m H g}$, temperature $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& 1-37 \\
& 2-55 \\
& 3-25 \\
& 4-43 \\
& 5-15
\end{aligned}
$$

Quiz 2/2

Sample bag ($\mathrm{V}=1.00 \mathrm{~L}$) was filled with 0.70 L of air having benzene concentration $56 \mu \mathrm{~g} / \mathrm{m}^{3}$. Sampling was done at a temperature $-10^{\circ} \mathrm{C}$. Then, the bag was transported to the laboratory where the temperature was $25^{\circ} \mathrm{C}$. What is the benzene concentration in the air inside a sampling bag stored in the lab?

$$
\begin{aligned}
& 1-49 \mu \mathrm{~g} / \mathrm{m}^{3} \\
& 2-56 \mu \mathrm{~g} / \mathrm{m}^{3} \\
& 3-64 \mu \mathrm{~g} / \mathrm{m}^{3} \\
& 4-51 \mu \mathrm{~g} / \mathrm{m}^{3} \\
& 5-61 \mu \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

Question

- What equipment and glassware is used for preparing liquid solutions?

Calibrated gas sampling bulb

To prepare gas standard, inject small amount (<10 uL) of analyte to bulb

Exercise

- How many nanograms of naphthalene should be injected into a $500-\mathrm{mL}$ bulb filled with "zero" air to prepare air with naphthalene concentration $50 \mathrm{ng} / \mathrm{L}$

$$
m=C V=50 \frac{n g}{L} \times 0.5 L=25 n g
$$

Exercise (continued)

- What concentration should the injected solution have if the injected volume is $5.0 \mu \mathrm{~L}$?

$$
C=\frac{25 n g}{5.0 \mu L}=5.0 \frac{n g}{\mu L}
$$

Exercise

Solution of benzene ($5.00 \mu \mathrm{~L}$) in methanol with concentration $10 \mathrm{mg} / \mathrm{mL}$ was injected to calibrated bulb having volume 250 mL and filled with air. All injected solution were evaporated. What is the concentration of benzene in the air inside bulb (in $\mu \mathrm{g} / \mathrm{L}$)

$$
C_{1} V_{1}=C_{2} V_{2}
$$

$$
C_{2}=\frac{5.00 \mu L \times 10 \frac{\mu g}{\mu L}}{250 \mathrm{~mL}}=\frac{50 \mu \mathrm{~g}}{250 \mathrm{~mL}}=0.200 \frac{\mu \mathrm{~g}}{\mathrm{~mL}}=200 \frac{\mathrm{mg}}{\mathrm{~L}}
$$

Task

- Convert this concentration to ppmV
- Convert this concentration to Pa

Question

- How many microliters of water can be introduced to a $250-\mathrm{mL}$ flask containing dry air at $25^{\circ} \mathrm{C}$?
- Answer: check vapor pressure of water at $25^{\circ} \mathrm{C}(3.169 \mathrm{kPa})$

$$
\begin{gathered}
p V=\frac{m R T}{M} \\
m=\frac{p V M}{R T}=\frac{3.169 \mathrm{kPa} \times 0.25 \mathrm{~L} \times 18 \mathrm{~g} \mathrm{~mol} \mathrm{~K}}{8.31 \mathrm{LkPa} \mathrm{~mol} \times 298 \mathrm{~K}}=5.8 \mathrm{mg}
\end{gathered}
$$

Task 2

How many microliters of methanol can be introduced to a $250-\mathrm{mL}$ flask containing air at $25^{\circ} \mathrm{C}$ of a 20% humidity?

$$
\begin{gathered}
\mathrm{p}=16.9 \mathrm{kPa} \\
m=\frac{p V M}{R T}=\frac{16.9 \mathrm{kPa} \times 0.25 \mathrm{~L} \times 31 \mathrm{~g} \mathrm{~mol} \mathrm{~K}}{8.31 \mathrm{LkPa} \mathrm{~mol} \times 298 \mathrm{~K}}=53 \mathrm{mg} \\
m=53 \mathrm{mg} \times 80 \%=42.4 \mathrm{mg} \\
V=\frac{42.4 \mathrm{mg} \mathrm{\mu L}}{0.792 \mathrm{mg}}=53.5 \mu \mathrm{~L}
\end{gathered}
$$

Gas tight syringes

PTFE plunger

Serial gas dilution (10000x)

Method 2

Tuduri et al., 2001

New Era NE-1002X

Example

- "Zero" air is supplied at $100 \mathrm{~mL} / \mathrm{min}$ rate
- Benzene solution in methanol ($\mathrm{C}=50 \mathrm{ng} / \mu \mathrm{L}$) is supplied at $10 \mu \mathrm{~L} / \mathrm{h}$ rate
- Calculate benzene concentration in produced air

Calculation

$$
\begin{gathered}
C=\frac{R_{\text {analyte }}}{R_{\text {air }}} \\
R_{\text {analyte }}=R_{\text {sol }} \times C_{\text {sol }}=10 \frac{\mu L}{\mathrm{~h}} \times 60 \frac{\mathrm{ng}}{\mu L}=600 \frac{\mathrm{ng}}{\mathrm{~h}} \\
R_{\text {air }}=100 \frac{\mathrm{~mL}}{\mathrm{~min}}=6000 \frac{\mathrm{~mL}}{\mathrm{~h}}=6 \frac{\mathrm{~L}}{\mathrm{~h}} \\
C=\frac{600 \frac{\mathrm{ng}}{\mathrm{~h}}}{6 \frac{\mathrm{~L}}{\mathrm{~h}}}=100 \frac{\mathrm{ng}}{\mathrm{~L}}=100 \frac{\mu \mathrm{~g}}{\mathrm{~m}^{3}}
\end{gathered}
$$

Task

- What concentration should toluene solution in methanol have for supplying to "zero" air flow at 200 $\mathrm{mL} / \mathrm{min}$ and obtaining air with tolune concentration 50 ng / L ? Syringe pump should operate at $5.0 \mu \mathrm{~L} / \mathrm{h}$ rate
- What volume should syringe have to operate for 24 h ?
- What will be the linear plunger rate for this syringe at the desired volumetric rate?

